Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(10): e3001802, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36227835

RESUMO

The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.


Assuntos
Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Poliploidia , Amido/metabolismo , Transcriptoma/genética , Triticum/genética
2.
New Phytol ; 236(4): 1584-1604, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35901246

RESUMO

Low-altitude aerial imaging, an approach that can collect large-scale plant imagery, has grown in popularity recently. Amongst many phenotyping approaches, unmanned aerial vehicles (UAVs) possess unique advantages as a consequence of their mobility, flexibility and affordability. Nevertheless, how to extract biologically relevant information effectively has remained challenging. Here, we present AirMeasurer, an open-source and expandable platform that combines automated image analysis, machine learning and original algorithms to perform trait analysis using 2D/3D aerial imagery acquired by low-cost UAVs in rice (Oryza sativa) trials. We applied the platform to study hundreds of rice landraces and recombinant inbred lines at two sites, from 2019 to 2021. A range of static and dynamic traits were quantified, including crop height, canopy coverage, vegetative indices and their growth rates. After verifying the reliability of AirMeasurer-derived traits, we identified genetic variants associated with selected growth-related traits using genome-wide association study and quantitative trait loci mapping. We found that the AirMeasurer-derived traits had led to reliable loci, some matched with published work, and others helped us to explore new candidate genes. Hence, we believe that our work demonstrates valuable advances in aerial phenotyping and automated 2D/3D trait analysis, providing high-quality phenotypic information to empower genetic mapping for crop improvement.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Reprodutibilidade dos Testes , Mapeamento Cromossômico/métodos , Fenótipo , Software
3.
Plant Cell Environ ; 45(8): 2381-2394, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611455

RESUMO

Circadian rhythms are 24-h biological cycles that align metabolism, physiology, and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and some cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to aspects of photosynthesis in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of photosynthetic biochemistry, measured using two approaches (delayed fluorescence, pulse amplitude modulation fluorescence). Second, we identified that light-dark cycles synchronize the phase of 24 h cycles of photosynthesis in M. polymorpha, whereas the phases of different thalli desynchronize under free-running conditions. This might also be due to the masking of the underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light-harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis is well-conserved amongst terrestrial plants.


Assuntos
Relógios Circadianos , Embriófitas , Marchantia , Ritmo Circadiano , Marchantia/genética , Marchantia/metabolismo , Fotossíntese
4.
Plant Physiol ; 187(2): 716-738, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608970

RESUMO

Plant phenomics bridges the gap between traits of agricultural importance and genomic information. Limitations of current field-based phenotyping solutions include mobility, affordability, throughput, accuracy, scalability, and the ability to analyze big data collected. Here, we present a large-scale phenotyping solution that combines a commercial backpack Light Detection and Ranging (LiDAR) device and our analytic software, CropQuant-3D, which have been applied jointly to phenotype wheat (Triticum aestivum) and associated 3D trait analysis. The use of LiDAR can acquire millions of 3D points to represent spatial features of crops, and CropQuant-3D can extract meaningful traits from large, complex point clouds. In a case study examining the response of wheat varieties to three different levels of nitrogen fertilization in field experiments, the combined solution differentiated significant genotype and treatment effects on crop growth and structural variation in the canopy, with strong correlations with manual measurements. Hence, we demonstrate that this system could consistently perform 3D trait analysis at a larger scale and more quickly than heretofore possible and addresses challenges in mobility, throughput, and scalability. To ensure our work could reach non-expert users, we developed an open-source graphical user interface for CropQuant-3D. We, therefore, believe that the combined system is easy-to-use and could be used as a reliable research tool in multi-location phenotyping for both crop research and breeding. Furthermore, together with the fast maturity of LiDAR technologies, the system has the potential for further development in accuracy and affordability, contributing to the resolution of the phenotyping bottleneck and exploiting available genomic resources more effectively.


Assuntos
Fertilizantes , Nitrogênio/metabolismo , Fenótipo , Tecnologia de Sensoriamento Remoto/instrumentação , Triticum/metabolismo , Triticum/genética
5.
New Phytol ; 228(2): 778-793, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533857

RESUMO

Efficient seed germination and establishment are important traits for field and glasshouse crops. Large-scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale germination scoring. Here, we present the SeedGerm system, which combines cost-effective hardware and open-source software for seed germination experiments, automated seed imaging, and machine-learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination- and establishment-related traits, in both comma-separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists' scoring of radicle emergence. Germination curves were produced based on seed-level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large-scale seed phenotyping and testing, for both research and routine seed technology applications.


Assuntos
Brassica napus , Germinação , Ácido Abscísico , Análise Custo-Benefício , Aprendizado de Máquina , Sementes/genética
6.
Magn Reson Chem ; 58(12): 1177-1186, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32220087

RESUMO

We use 60-MHz benchtop nuclear magnetic resonance (NMR) to acquire 1 H spectra from argan oils of assured origin. We show that the low-field NMR spectrum of neat oil contains sufficient information to make estimates of compositional parameters and to inform on the presence of minor compounds. A screening method for quality and authenticity is presented based on nearest-neighbour outlier detection. A variety of oil types are used to challenge the method. In a survey of retail-purchased oils, several instances of fraud were found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...